Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14547, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008524

RESUMO

Leaf decomposition is the primary process in release of nutrients in the dynamic mangrove habitat, supporting the ecosystem food webs. On most environments, fungi are an essential part of this process. However, due to the peculiarities of mangrove forests, this group is currently neglected. Thus, this study tests the hypothesis that fungal communities display a specific succession pattern in different mangrove species and this due to differences in their ecological role. A molecular approach was employed to investigate the dynamics of the fungal community during the decomposition of three common plant species (Rhizophora mangle, Laguncularia racemosa, and Avicennia schaueriana) from a mangrove habitat located at the southeast of Brazil. Plant material was the primary driver of fungi communities, but time also was marginally significant for the process, and evident changes in the fungal community during the decomposition process were observed. The five most abundant classes common to all the three plant species were Saccharomycetes, Sordariomycetes, Tremellomycetes, Eurotiomycetes, and Dothideomycetes, all belonging to the Phylum Ascomycota. Microbotryomycetes class were shared only by A. schaueriana and L. racemosa, while Agaricomycetes class were shared by L. racemosa and R. mangle. The class Glomeromycetes were shared by A. schaueriana and R. mangle. The analysis of the core microbiome showed that Saccharomycetes was the most abundant class. In the variable community, Sordariomycetes was the most abundant one, mainly in the Laguncularia racemosa plant. The results presented in this work shows a specialization of the fungal community regarding plant material during litter decomposition which might be related to the different chemical composition and rate of degradation.


Assuntos
Avicennia , Combretaceae , Microbiota , Rhizophoraceae , Avicennia/metabolismo , Brasil , Folhas de Planta/metabolismo , Plantas , Rhizophoraceae/microbiologia
2.
PeerJ ; 9: e11985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631309

RESUMO

BACKGROUND: The importance of organic farming has increased through the years to promote food security allied with minimal harm to the ecosystem. Besides the environmental benefits, a recurring problem associated with organic management is the unsatisfactory yield. A possible solution may rely on the soil microbiome, which presents a crucial role in the soil system. Here, we aimed to evaluate the soil bacterial community structure and composition under organic and conventional farming, considering the tropical climate and tropical soil. METHODOLOGY: Our organic management treatments were composed by composted poultry manure and green manure with Bokashi. Both organic treatments were based on low nitrogen inputs. We evaluated the soil bacterial community composition by high-throughput sequencing of 16S rRNA genes, soil fertility, and soil enzyme activity in two organic farming systems, one conventional and the last transitional from conventional to organic. RESULTS: We observed that both organic systems evaluated in this study, have higher yield than the conventional treatment, even in a year with drought conditions. These yield results are highly correlated with changes in soil chemical properties and enzymatic activity. The attributes pH, Ca, P, alkaline phosphatase, and ß- glucosidase activity are positively correlated with organic systems, while K and Al are correlated with conventional treatment. Also, our results show in the organic systems the changes in the soil bacteria community, being phyla Acidobacteria, Firmicutes, Nitrospirae, and Rokubacteria the most abundant. These phyla were correlated with soil biochemical changes in the organic systems, helping to increase crop yields. CONCLUSION: Different organic management systems, (the so-called natural and organic management systems, which use distinct organic sources), shift the soil bacterial community composition, implying changes in their functionalities. Also, our results contributed to the identification of target bacterial groups and changes in soil chemical properties and enzymatic activity in a trophic organic farming system, which may contribute to higher crop yields.

3.
Sci Rep ; 11(1): 6733, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762664

RESUMO

Soil organic carbon (SOC) has a significant effect on the carbon cycle, playing a vital role in environmental services and crop production. Increasing SOC stock is identified as an effective way to improve carbon dioxide sequestration, soil health, and plant productivity. Knowing soil water is one of the primary SOC decomposition driver, periods in the crops growth stages with increased water movement might influence the SOC dynamics. Here, we evaluate the temporal effect of four precision irrigation thresholds ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] kPa) in potato crop on SOC dynamics using the Partial Least Square algorithm and the Tea Bag Index in a sandy soil under potato production. The difference of SOC decomposition rate between the precision irrigation thresholds is developed in the second quarter of the growing season, between 38 and 53 days after planting. This critical period occurred in a stage of strong vegetative growth and rapid irrigation cycles. The precision irrigation threshold affected the decomposition rate of SOC. A faster decomposition of labile organic carbon was promoted by water excess ([Formula: see text] kPa). The dryer ([Formula: see text], [Formula: see text], and [Formula: see text] kPa) precision irrigation thresholds did not show any differences. The advancement of this knowledge may promote soil health conservation and carbon sequestration in agricultural soil.

4.
Sci Rep ; 9(1): 4400, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867512

RESUMO

The world demand for phosphate has gradually increased over the last decades, currently achieving alarming levels considering available rock reserves. The use of soil microorganisms, such as arbuscular mycorrhizal fungi (AMF), has been suggested as a promising alternative to improve phosphorus-use efficiency. However, the effect of the source of phosphorus on the interactions within the soil microbial community remains unclear. Here, we evaluated the links between the total dry matter content of sugarcane and the interactions within the soil microbial community under different phosphate sources, with/without AMF inoculation. The phosphate sources were Simple Superphosphate (SS, 18% of P2O5), Catalão rock phosphate (CA, 2.93% of P2O5) and Bayovar rock phosphate (BA, 14% of P2O5). The results indicated that the BA source led to the largest total dry matter content. The phosphate source affected total dry matter and the structure of the soil microbial communities. The bacterial interactions increased across sources with high percentage of P2O5, while the fungal interactions decreased. The interactions between bacterial and fungal microorganisms allowed to identify the percentage of P2O5 resulting in the highest total sugarcane dry matter. Our findings suggested the soil microbial interactions as a potential microbial indicator helping to improve the agricultural management.


Assuntos
Fósforo/química , Saccharum/crescimento & desenvolvimento , Saccharum/microbiologia , Difosfatos/química , Solo/química , Microbiologia do Solo
5.
Braz. j. microbiol ; 49(1): 87-96, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889214

RESUMO

ABSTRACT Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events.


Assuntos
Solo/química , Microbiologia do Solo , Bactérias/isolamento & purificação , Filogenia , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Petróleo/análise , Petróleo/metabolismo , Biodiversidade , Áreas Alagadas , Nitrogênio/metabolismo
6.
Braz J Microbiol ; 49(1): 87-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28827029

RESUMO

Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Nitrogênio/metabolismo , Petróleo/análise , Petróleo/metabolismo , Filogenia , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Áreas Alagadas
7.
Microb Ecol ; 71(1): 164-77, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26304552

RESUMO

The diversity of arbuscular mycorrhizal fungi (AMF) was studied in the Atlantic Forest in Serra do Mar Park (SE Brazil), based on seven host plants in relationship to their soil environment, altitude and seasonality. The studied plots along an elevation gradient are located at 80, 600, and 1,000 m. Soil samples (0-20 cm) were collected in four seasons from SE Brazilian winter 2012 to autumn 2013. AMF spores in rhizosperic soils were morphologically classified and chemical, physical and microbiological soil caracteristics were determined. AMF diversity in roots was evaluated using the NS31/AM1 primer pair, with subsequent cloning and sequencing. In the rhizosphere, 58 AMF species were identified. The genera Acaulospora and Glomus were predominant. However, in the roots, only 14 AMF sequencing groups were found and all had high similarity to Glomeraceae. AMF species identities varied between altitudes and seasons. There were species that contributed the most to this variation. Some soil characteristics (pH, organic matter, microbial activity and microbial biomass carbon) showed a strong relationship with the occurrence of certain species. The highest AMF species diversity, based on Shannon's diversity index, was found for the highest altitude. Seasonality did not affect the diversity. Our results show a high AMF diversity, higher than commonly found in the Atlantic Forest. The AMF detected in roots were not identical to those detected in rhizosperic soil and differences in AMF communities were found in different altitudes even in geographically close-lying sites.


Assuntos
Fungos/isolamento & purificação , Micorrizas/isolamento & purificação , Microbiologia do Solo , Altitude , Biodiversidade , Brasil , Florestas , Fungos/classificação , Fungos/genética , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/genética , Filogenia , Raízes de Plantas/microbiologia , Rizosfera , Estações do Ano
8.
Antonie Van Leeuwenhoek ; 105(4): 663-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24481491

RESUMO

Araucaria forests in Brazil today correspond to only 0.7 % of the original 200 km(2) of natural forest that covered a great part of the southern and southeastern area of the Atlantic Forest and, although Araucaria angustifolia is an endangered species, illegal exploitation is still going on. As an alternative to the use of hardwoods, Pinus elliottii presents rapid growth and high tolerance to climatic stress and low soil fertility or degraded areas. Thus, the objective of this study was to evaluate the effect of IAA-producing bacteria on the development of A. angustifolia and P. elliottii. We used five bacterial strains previously isolated from the rhizosphere of A. angustifolia, which produce quantities of IAA ranging from 3 to 126 µg mL(-1). Microbiolized seeds were sown in a new gnotobiotic system developed for this work, that allowed the quantification of the plant hormone IAA produced by bacteria, and the evaluation of its effect on seedling development. Also, it was shown that P. elliottii roots were almost as satisfactory as hosts for these IAA producers as A. angustifolia, while different magnitudes of mass increases were found for each species. Thus, we suggest that these microbial groups can be helpful for the development and reestablishment of already degraded forests and that PGPR isolated from Araucaria rhizosphere have the potential to be beneficial in seedling production of P. elliottii. Another finding is that our newly developed gnotobiotic system is highly satisfactory for the evaluation of this effect.


Assuntos
Bactérias/metabolismo , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , Traqueófitas/microbiologia , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...